Как отмыть полимерный изолятор

Эксплуатация зарубежных полимерных изоляторов

Осмотр и профилактика

Зарубежные эксплуатационные организации сообщают о проводимых ими регулярных осмотрах с заданной периодичностью эксплуатируемых некерамических изоляторов с целью принятия необходимых мер (чистка изоляторов , их демонтаж для исследований или замены и т.д ).

Первоначально считалось, что в чистке (обмыве) некерамических изоляторов в процессе эксплуатации нет необходимости. В настоящее время за рубежом повсеместно признается, что периодическая чистка необходима для продления срока службы изоляторов. При этом перед чисткой эксплуатационники должны получить консультацию производителей об их продукции. Большинство конструкций может подвергаться сухой чистке,например , обдувом абразивным материалом ( в США чаще всего измельченной кукурузой ), однако далеко не все типы некерамических изоляторов могут обмываться водой под высоким давлением. В частности , как уже указывалось , у изоляторов с модульной сборкой юбок после обмыва высоким давлением может происходить трекинг стеклопластикового стержня.

В США в действующие Руководящие указания IEEE по чистке изоляторов внесен проект раздела, касающийся  обмыва высоким давлением некерамических изоляторов с оболочками из EPDM или EPDM / EPR раздельно для модульно и цельно отлитых изоляторов. Обмыв силиконовых изоляторов по этим рекомендациям должен производиться только при низком или среднем давлении. 

Дальнейшее изложение вопросов эксплуатации некерамических изоляторов в основном построено на основе указанного американского руководства. При обмыве некерамических изоляторов струя воды должна перемещаться в направлении сверху вниз. К сожалению эти рекомендации не всегда можно реализовать в эксплуатационных условиях на ВЛ , т.к. некерамические изоляторы часто взаимозаменялись и на расстоянии нелегко установить тип оболочки. Как правило , выбор метода обмыва производится на месте руководителем бригады. 

Перед установкой в эксплуатацию новые некерамические изоляторы обычно не требуют очистки. Однако , если они запылились при хранении , достаточно обтереть их влажной тряпкой. Если новые изоляторы перед установкой очень грязные и обтирание влажной тряпкой недостаточно , то может быть использован слабый раствор очистителя , но потом он должен быть тщательно удален с поверхности чистой водой. Применять для чистки некерамических изоляторов какие-либо растворители не рекомендуется. В некоторых районах на эксплуатируемых изоляторах может образоваться плотный слой загрязнения , который может быть удален обмывом слабым раствором отбеливающей хлорной жидкости ( 1 часть на 4 части воды ). Обмыв может сопровождаться легким поскребыванием ветошью или мягкой щеткой и производиться легким обрызгиванием изолятора раствором из ручного пульверизатора. При этом необходимо обеспечить неповреждаемость концевой заделки изолятора. После чистки изолятор должен быть тщательно обмыт чистой водой. 

При монтаже изоляторов необходимо исключить контакт поверхности изолятора с острыми (режущими) предметами и с абразивными поверхностями. Изоляторы при этом должны подниматься за оконцеватели. Полимерные опорные изоляторы могут быть осторожно подняты в горизонтальном положении двумя нейлоновыми ремнями , при этом следует избегать возникновения изгибающих усилий. 

Повреждения изоляторов

Если на устанавливаемом в эксплуатацию изоляторе имеются зарубки, посечки или вдавливания поверхности , изолятор необходимо отложить для внимательной проверки и возможного ремонта. Изоляторы даже со слабо обнаженным стеклопластиковым стержнем должны быть забракованы и заменены. С земли серьезные повреждения от стрельбы легко видны невооруженным глазом , но для обнаружения слабого повреждения стержня обычно требуется бинокль. Эти изоляторы также должны быть заменены , т.к. деффект может прогрессировать из-за воздействия влаги и привести к поломке или трекингу стеклопластикового стержня. В некоторых конструкциях при эксплуатации могут возникнуть трещины юбок и /или оболочки вследствие воздействия УФ лучей , токов утечки или короны. Эти изоляторы должны быть заменены. 

Повреждения из-за перекрытий в большинстве случаев трудно выявить с земли , хотя иногда повреждения очевидны и ясно , что изолятор должен быть заменен. Как правило , юбки или оболочки не повреждаются , пока не произойдет электрический пробой изолятора , например , в случае излома стержня. В этой ситуации оболочка изолятора вспучивается , т.к. внутри стержня образуется газ под давлением. Обычно повреждения при перекрытиях ограничиваются металлическими оконцевателями изолятора и / или дугозащитной арматурой. Этот тип повреждений с земли выявить трудно , однако усиленная слышимая корона дает указание на то , что изолятор должен быть заменен. В некоторых случаях повреждаются концевые заделки и если стержень становится видимым или разгерметизирование очевидно , изолятор должен быть заменен. Во время периодических осмотров выявленные изоляторы  , оболочка которых обесцвечена из-за солнечных лучей , или имеющие на поверхности загрязнение , плесень , незначительные повреждения юбок из-за стрельбы или сколов в срочной замене не нуждаются. Некерамические изоляторы с незначительными повреждениями оболочки или юбок могут быть отремонтированы. 

Слабыми в США и Канаде считаются повреждения оболочки (или юбки) диаметром до одного дюйма. Изоляторы с любыми повреждениями стеклопластикового стержня ремонту не подлежат и в электроустановках применяться не могут. Методика ремонта некерамических изоляторов в основном состоит в следующем. Подготовку поврежденного места начинают с тщательного удаления рыхлого материала , окружающего повреждение ( разрезанием и соскабливанием до гладкости) , при этом очень важно не повредить стеклопластиковый стержень. Материалы , прочно не сцепленные со стержнем , должны быть удалены. После этого поверхность должна быть начисто протерта чистой ветошью , смоченной изопропиловым спиртом. Ремонт состоит  в заполнении раковины RTV — силиконовой резиной и замазывании её компаундом , предназначенным для наружного использования в электротехнических устройствах. Такие замазки имеют высокое наполнение тригидратом алюминия. После ремонта обработанное место должно быть защищено от грязи и влаги до полного сшивания полимера. Обычно для полного сшивания необходимо 24 часа , после чего изолятор может устанавливаться в эксплуатацию. Металлическая арматура и оконцеватели , имеющие повреждения , ремонту не подлежат.

За рубежом известен ряд случаев, когда после установки на ВЛ со снятым напряжением, некерамические изоляторы повреждались сразу после подачи на них напряжения. Поэтому в США перед установкой новых некерамических изоляторов в эксплуатацию на ВЛ (с учетом того , что каждый из них прошел заводские испытания) рекомендуется провести испытания каждого изолятора высоким напряжением. При этих испытаниях после предварительной протирки ветошью , смоченной в изопропиловом спирте, и проверки на отсутствие внешних повреждений на каждый изолятор подается 1,5 номинального фазного напряжения ВЛ , выдерживаемого в течение 3 -х минут с записью тока утечки. Во время испытаний не должно быть перекрытий , а малые колебания тока утечки считаются нормальным явлением. Однако , если при испытаниях ток утечки возрастает во времени , это указывает на дефект внутри изолятора , и такой изолятор возвращается производителю как дефектный. После испытаний рекомендуется сделать отметку о прохождении испытания нанесением окрашенной полосы на каждый оконцеватель. Испытанные изоляторы должны быть помещены в специальные контейнеры для безопасной транспортировки на ВЛ. Это может быть , например , ПВХ — труба с заглушками на концах , такая труба может использоваться многократно. Видимое повреждение защитной трубы может указывать на возможное повреждение изолятора в трубе.

Источник

Загрязнение и увлажнение изоляторов значительно снижает их разрядное напряжение. Особенно опасно для изоляции одновременное действие загрязнения и увлажнения; разрядное напряжение настолько снижается, что может оказаться ниже рабочего напряжения, что приводит к перекрытию загрязненных и увлажненных изоляторов. Если это перекрытие происходит на шинах подстанции, то оно приводит к полному обесточению подстанции, т.е. к тяжелой аварии.

Увлажнение, вызванное туманом, опаснее дождя. При тумане увлажняется вся поверхность изолятора (как верхние, так и нижние поверхности его юбок), в то время как при дожде часть поверхности изолятора остается сухой. Загрязнение и туман в отдельности не так страшны, опасно их совместное действие.

Различают следующие виды загрязнения:

1. Загрязнения от топочных уносов (например, угольных котельных).

2. Загрязнения от химических, металлургических и цементных (или подобных им заводов).

3. Соляные загрязнения, возникающие вследствие осаждения на поверхности изоляторов мелкой морской соленой водяной пыли на линиях, проходящих вблизи моря или эрозии засоленных почв.

По степени стойкости загрязнения делятся на:

1. Легко очищающиеся с поверхности.

2. Образующие на поверхности изоляторов крепко пристающий несмывающийся слой.

3. Растворимые в воде соли.

В районах с интенсивным загрязнением атмосферы применяются следующие меры для предотвращения аварий, вызванных перекрытием загрязненной изоляции:

1. Учет «розы ветров» при выборе места сооружения ОРУ по отношению к источнику загрязнения.

2. Применение устройств для очистки газов от топочных уносов (электрофильтры, мокрая золоочистка). Эти способы очистки газов являются достаточно эффективными, уходящие газы очищаются от загрязняющих их частиц на 95 – 98%.

3. Применение высоких дымовых труб (на современных пылеугольных электростанциях применяются дымовые трубы высотой до 240м и более). При высоких дымовых трубах загрязняющие частицы, выходящие из труб (после очистки газов фильтрами), рассеиваются воздушными течениями на большие площади, и плотность оседающих загрязняющих осадков будет невелика. Изоляция ОРУ, расположенных на небольшом расстоянии от источника загрязнения, практически не загрязняется.

Если выполнены требования по п.п. 1, 2 и 3, то применение других мер борьбы с загрязнением изоляции на электрических станциях обычно не требуется, обеспечивается нормальная эксплуатация ОРУ.

При невыполнении требований п.п. 1, 2 и 3 для уменьшения вероятности перекрытия загрязненной изоляции приходится применять другие меры, главным образом по периодической очистке загрязненной изоляции. К таким мерам относятся:

4. Периодическая очистка (вручную) загрязненной изоляции и обтирка сухой ветошью, а в случае стойких загрязнений (цемент и др.) – обмывка тряпками или кистями, смоченными специальными растворителями. Это очень трудоемкий метод; кроме того, он требует поочередного отключения отдельных частей ОРУ, иногда с уменьшением надежности электроснабжения отдельных потребителей; при большом количестве переключений возрастает вероятность ошибок персонала, что может привести к авариям и несчастным случаям с людьми.

5. Обмывка водой специально обученным персоналом из шланга под рабочим напряжением. Этот метод не требует обесточения установки; однако он не нашел широкого распространения по следующим причинам:

– не всякая вода удовлетворяет требованиям по величине удельного сопротивления; удельное сопротивление воды при обмывке изоляторов сплошной струей под давлением 0,5 – 1МПа должно быть не ниже 15 Ом ∙ м;

– возможны перекрытия от брызг, попадающих при обмывке на соседнюю загрязненную, еще не обмытую изоляцию. Это приводит к тяжелым авариям, особенно если перекрытие изоляции произошло на шинах РУ;

– не всякое загрязнение можно смыть.

Разновидностью обмывки изоляторов из шланга под рабочим напряжением является обмывка прерывистой струей воды. Для образования прерывистой струи воды применяется роторный прерыватель, позволяющий получить струю, отдельные участки которой разделены воздушными промежутками.

В прерывателе ОРГРЭС (рис.4.1) основным элементом является ротор, который свободно вращается на валу в легком жестяном кожухе 1 и приводится во вращение лопастями турбинки 6, питаемый через вспомогательный ствол 7.

Главной частью ротора являются ножи 2. При вращении ротора нож в момент, показанный на рисунке, находится на пути движения воды, выходящей сплошной струей из главного ствола 3. Вода, попадая на нож, меняет направление своего движения, разбрызгивается и отводится вниз, в сливное отверстие 4. При повороте ротора ножи опустятся вниз и вода из ствола 3 свободно устремится в выходное отверстие 5 кожуха. В следующий момент ножи ротора снова перекроют путь струе к выходному отверстию. При таком вращении ротора на пути потока воды за кожухом возникает прерывистая струя.

По дальности вылета она не уступает обычной струе, создаваемой стволом с насадкой соответствующего диаметра.

Как показал опыт, применение обмыва изоляторов водой снижает трудозатраты на очитку изоляторов в 4 – 5 раз, а использование высоконапорных струй позволяет произвести обмыв одной гирлянды ВЛ 500кВ за 1 – 1,5 мин при расходе воды около 100л.

Удельное сопротивление воды допускается не менее 10 Ом ∙ м.

При применении прерывателя струи воды для обмывки изоляторов под рабочим напряжением исключается ток утечки по струе и тем самым повышается безопасность работ. Рис.4.1. Роторный прерыватель

струи воды для отмывки изоляторов

6. Очистка изоляторов под напряжением при помощи изолирующих штанг со щеточным механизмом. Этот метод применим лишь для очистки сухих, несцементировавшихся (рыхлых) загрязнений. При очистке изоляторов ЗРУ щетки снабжаются пылесосом.

7. Увеличение количества стандартных элементов в гирлянде или колонке опорных изоляторов. Это повышает разрядное напряжение загрязненной изоляции и увеличивает промежутки времени между очистками.

8. Применение в ОРУ сборных колонок, собранных из опорно-штыревых изоляторов специального типа с повышенной длиной пути утечки (табл.2.7), а также применение проходных изоляторов и усиленной внешней изоляцией для районов с повышенной степенью загрязнения.

9. Применение подвесных изоляторов специального типа для районов интенсивного загрязнения (рис.2.5, ж – м, табл.2.3).

10. Применение в ОРУ проходных изоляторов выключателей с обогревом. Опыт показал, что при обогреве при наличии загрязнения и увлажнения разрядное напряжение изолятора примерно в 2 раза выше, чем без обогрева, т.к. на подсушенной поверхности изолятора значительно меньше задерживаются загрязняющие частицы. Для проходных изоляторов силовых трансформаторов (вводов) искусственный обогрев не требуется. Обогрев вводов осуществляется теплом, выделяющимся в трансформаторе.

11. Применение изоляторов с полупроводящей глазурью. Распределение напряжения по загрязненной поверхности фарфора резко неравномерное, что приводит к сильному снижению напряжения перекрытия гирлянд. Применение полупроводящей глазури, нанесенной равномерно на поверхность фарфора, предотвращает возникновение такой неравномерности распределения напряжения; разрядное напряжение загрязненной гирлянды значительно повышается. Благоприятную роль также играет подсушка поверхности изоляторов вследствие подогрева токами утечки по полупроводящей глазури. Эти токи утечки очень малы и не создают значительной потери энергии. Сопротивление изолятора ПФ60-А (рис.2.5., д), покрытого полупроводящей глазурью, составляет 50 – 100Мом.

12. Применение гидрофобных (водоотталкивающих) покрытий (турбинные и трансформаторные масла) рекомендуется для ОРУ-110кВ и выше, расположенных в зонах с IV СЗА и выше (табл.3.1) при цементирующихся уносах, в зонах уносов химических предприятий с большим содержанием в выбросах легкорастворимых веществ, приводящих к существенному повышению проводимости естественных осадков. Нанесение покрытий может осуществляться под рабочим напряжением специальными изолирующими штангами, снабженными компрессорами.

В КРУН 6 – 10кВ, эксплуатируемых в зонах III-V СЗА (табл.3.1) применяется латексное покрытие. Латекс – водный раствор синтетического каучука (этиленпропиленового тройного) наносится в сухую погоду при температуре от -10 до +30ºС вручную кистью на чистую сухую поверхность изолятора, толщина слоя пасты – 0,1 – 0,2мм. Продолжительность высыхания пасты 15 – 20 мин.

Применяются и другие пасты для обработки изоляторов в разных зонах СЗА, для различных видов загрязнений и климатических условий.

Покрытие не смачивается водой, образование на ней сплошной пленки влаги становится невозможным (остаются лишь отдельные капли). Это повышает разрядное напряжение примерно на 20%. Кроме того, значительно облегчается чистка изолятора от трудноудаляемых сцементировавшихся загрязнений. Очистка производится путем протирки, тряпками, смоченными в растворителях. Пленка покрытия растворяется и удаляется вместе со слоем загрязнения.

Источник

Notio.

Подробности Категория: ВЛ

Чистка вручную производится в случаях невозможности применения обмыва изоляции струей воды или малой эффективности последнего чистой сухой ветошью при пылевых несцементировавшихся загрязнениях, а при наличии на поверхности изоляторов трудноудаляемых пленок — ветошью или кистью, смоченными различными растворителями (табл.  1).
Обмыв изоляторов ВЛ до 500 кВ включительно производится специально обученным персоналом струей воды под давлением 0,5 — 1 МПа (5 —10 кгс/см2) при минимально допустимых расстояниях по струе воды между насадкой и обмываемым изолятором (табл.  2).

Таблица  1. Препараты для чистки изоляторов


Наименование препарата

Область применения

Состав и способ приготовления

Методика
использования

Примечание

Паста из отмученной глины и соляной кислоты

Загрязнения на щелочной основе, известковая и содовая пыль

Смесь 70% по массе сухой отмученной глины с 30% водного (20 %-ного) раствора соляной кислоты

Паста наносится и растирается кистью по поверхности изолятора, через 10-15 мин удаляется мокрой тряпкой. Изолятор промывается теплой водой и вытирается насухо

Для увеличения выдержки пасты на поверхности изолятора до 20— 30 мин в нес добавляют трансформаторное масло

Раствор тринатрий- фосфата

Загрязнения от ТЭЦ и алюминиевых комбинатов, смолистые отложения

10%-ный раствор тринатрий-фосфата

Промывка в течение 15 — 20 мин демонтированных изоляторов в горячем (60 — 70 °С) растворе

Предложен Свердловэнерго

Раствор КЖВ

Уносы ТЭЦ, работающих на сернистом топливе, с одновременным воздействием загрязнений химического производства

Смесь 5 %-ного раствора соляной кислоты и жавелевой воды в пропорции 3 :2. Смесь до применения выдерживается на воздухе в течение 5—6 ч

Раствор наносят на поверхность изолятора кистью или тряпкой, после чистки изолятора — обмывка теплой водой

Предложен Армглавэнерго

Раствор соляной кислоты

Плотные сернистые и углекислые уносы металлургических, коксо-химических комбинатов и ТЭЦ, цементная пыль, подвергшаяся схватыванию

10%-ный раствор соляной кислоты

Очистка поверхности изолятора тряпкой, смоченной в растворе, последующая обильная промывка поверхности изолятора теплой водой

Бензин, керосин

Смолистые, жирные отложения

Очистка поверхности изолятора тряпкой, смоченной растворителями, с последующей протиркой сухой ветошью

Трансформаторное и турбинное масло

Уносы цементных заводов

Очистка тряпкой, смоченной маслом

Таблица  2. Минимальные расстояния при обмыве изоляторов


Диаметр выходного отверстия насадки, мм

Минимально допустимое расстояние по струе, м, при напряжении ВЛ, кВ

До 10

35

110-150

220

330

500

10

3

4

5

6

7

8

12

3,5

4,5

6

8

9

10

14

4

5

6,5

8,5

9,5

11

16

4

6

7

9

10

12

При обмыве внешней изоляции ОРУ под напряжением удельная проводимость воды должна быть не выше 1400 мкОм/см для ОРУ 35 кВ и не более 700 мкОм/см для ОРУ, 110-500 кВ.
Периодичность ручной очистки изоляторов или их обмыва определяется по результатам измерения удельной поверхности проводимости слоя загрязнения изоляторов.
Покрытие изоляторов гидрофобными пастами (табл.  3 и  4) и смазками (турбинные и трансформаторные масла) рекомендуется для ОРУ 110 кВ и выше, расположенных в зонах с IV СЗА и выше при цементирующихся уносах, в зонах уносов химических предприятий с большим содержанием в выбросах легкорастворимых веществ, приводящих к существенному повышению проводимости естественных осадков.
Покрытие изоляторов ОРУ смазками может осуществляться под рабочим напряжением с помощью специальных изолирующих штанг, снабженных компрессором. Конструкции таких штанг разработаны в Уралтехэнерго, Донбассэнерго и в ряде других энергосистем. Получило применение нанесение латексных покрытий на изоляторы КРУН 6 — 10 кВ, эксплуатируемых в зонах III—V СЗА. Латекс СКЭПГ — водный раствор синтетического каучука этиленпропиленового тройною наносится в сухую погоду при температуре от минус 10 до плюс 30 °С вручную кистью на чистую сухую поверхность изолятора. Толщина слоя пасты — 0,1 —0,2 мм. Продолжительность высыхания пасты 15 — 20 мин. При повреждении старого слоя зачищаются его края и наносится новый слой.

Таблица  3. Гидрофобные пасты для обработки изоляторов


Марка пасты

Состав пасты

Норма расхода пасты, г/дм2, для зоны загрязнения

Стоимость 1 кг пасты, руб.

Толщина
слоя
пасты,
мм

Завод-
изготовитель

III, IV

V, VI

КВ-3

Кремний-органическая жидкость ПМС, загущенная аэро- силом

5/3

5/3

14

0,5/0,2

Завод «Кремнеполимер»
(г. Запорожье)

кпд

То же

5/3

5/3

12

0,5/0,3

То же

КПИ

Кремний-органическая жидкость, ПМС и 1,2% борной кислоты

6

0,5

» »

ГПИ-1

Жидкие и твердые углеводороды

10/10

20/20

3

1/2

Московский нефте-маслозавод (МНМЗ)

ОРГРЭС-150

Минеральные и кремний-органические масла, загущенные аэросилом и церезином

10/10

20/20

7

1/2

То же

Примечание. Норма расхода пасты и толщина слоя пасты указаны в числителе для зоны умеренного климата, в знаменателе для зоны жаркого климата.

Таблица  4. Разовая потребность в пасте для обработки одного изолятора или трансформатора тока


Тип изолятора или трансформатора тока

Площадь
поверхности
изолятора,
дм2

Количество пасты, г/изолятор, необходимое для обработки изоляторов в районах с V и VI степенями загрязнения

Зона умеренного климата

Зона жаркого климата

ОРГРЭС-150

КПД

ОРГРЭС-150.
ГПИ-1

КПД

ПФ6-Б (ПМ,5)

13

260

65

260

39

ПФ6-А (П-4,5)

13

260

65

260

39

ПФ6-В (ПФЕ-4,5)

18

360

90

360

54

ПФ10-А

22

440

110

440

66

ПФ20-А (ПФЕ-16)

29

580

145

580

87

ПФГ-6А (НС-2)

25

500

125

500

75

ПФГ8-А

27

540

135

540

81

ПФГ6-А

26

320

130

320

78

ОНСУ-10-300

18

360

90

360

54

КО-10

13

260

65

260

39

ОНС-20-500

17

340

85

340

51

ОНС-20-2000

26

520

130

520

78

НОС-35-500

31

620

155

620

93

НОСУ-35-500

57

1400

285

1400

174

ОНС-35-1500

50

1000

250

1000

150

ОНС-35-2000

50

1000

250

1000

150

НОС-110-400

102

2040

510

2040

306

НОС-110-600

16

320

80

320

48

КО- 110-1500

13

260

65

260

39

ОНС-110-2000

11

220

55

220

33

ΤΦ3Μ-35

250

5000

1250

5000

750

ТФЗМ-220

170

3400

850

3400

540

ТФУМ-330

210

4200

1005

4200

630

ТФЗМ-500

272

5400

1360

5440

816

Источник